Study of Perifosine Penetration in 3D Cell Cultures using Peeling Analysis of MALDI MS and Immunofluorescence Images

Jan Preisler¹, Markéta Macháliková¹, Jarmila Navrátilová², Barbora Pavlatovská³, Jan Michálek³, Adam Pruška³, Karel Štěpka³, Katarzyna Anna Radaszewicz², Michał Kozubek³, Jan Šmarda³

1. Central European Institute of Technology (CEITEC) and Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
2. Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
3. Centre for Biomedical Imaging Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic

Sample preparation for subsequent MALDI MSI and immunofluorescence

- Adenocarcinoma cell cultures HT-29 were cultivated to produce approximately 1 mm spheroids.
- Perifosine was added to the medium for a defined time interval. Spheroids were washed with PBS and transferred to a PBS and frozen.
- Samples, 12 µm thick sections on a conductive glass slide, were marked with fiducials and covered with sublimated DIB-matrix. Further sections were imaged using a MALDI TOF mass spectrometer with 50 µm pixel size and the m/z rage 340-1000.
- After washing the matrix with organic solvents, samples were processed by standard immunohistochemistry (IHC) protocol with selected antibodies (SLUG, cleaved caspase 3, SNA/SLUG) and visualized by laser scanning confocal microscopy (LSCM) with 1.5 µm pixel size.
- Data processing software included Feniex Imaging, DataCube Explorer, LAS X, Image J (Fiji) and MATLAB.

MALDI MSI and immunofluorescence protocol:
- spheroid cultivation
- drug induction
- spheroid embedding
- spheroid sectioning
- MALDI MSI analysis
- matrix deposition

MALDI MSI settings:
- matrix deflection, 100 µl
- matrix volume, 1 µl
- matrix density, 50 µg/mL
- laser energy, 50 mJ
- laser diameter, 250 µm

MALDI MSI and immunofluorescence protocol:
- drug induction
- MALDI MSI analysis
- matrix deposition

MALDI MSI settings:
- matrix deflection, 100 µl
- matrix volume, 1 µl
- matrix density, 50 µg/mL
- laser energy, 50 mJ
- laser diameter, 250 µm

Introduction

- Three-dimensional cell aggregates, or “spheroids” have gained popularity for studies of drug uptake and diffusion; they can mimic in vivo barriers and their preparation takes a few days.
- Proliferating and apoptotic cells in the spheroids can be visualized by a fluorescence microscopy after immunostaining.
- Distribution of drugs, which often do not exhibit specific fluorescence, has to be revealed using another technique, such as matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI).
- To evaluate efficacy of a potential anti-cancer drug perifosine within spheroids of colorectal carcinoma, images of drug abundance from MALDI MSI and fluorescence visualized proliferating and/or apoptotic cells must be precisely correlated and carefully compared.

Image coregistration and spheroid peeling

For MALDI MSI and LSCM image coregistration, four modality-specific issues had to be addressed:
- The grayscale depth was different for the two modalities: while raw MALDI MSI data are encoded as 64-bit floating point numbers, the LSCM grayscale depth may be 8, 12 or 16 bits per channel.
- MALDI MSI spatial resolution was an order of magnitude coarser than that of LSCM. The spatial resolution of MALDI MSI in our assays was 50 µm, whereas that of the LSCM images was 1.5 µm.
- The aspect ratios of the MALDI MSI and LSCM images may not match; an assay may deliver MALDI MSI images of 65 x 65 pixels in size, while the corresponding LSCM mosaic to be coregistered comprises 170 x 170 x 128 pixels.
- MALDI vs. LSCM images can be slightly rotated with respect to each other.

Results

- A robust sample preparation protocol for the multimodal imaging, which includes matrix removal, was developed.
- The overlay of MALDI MSI and LSCM spheroid images required fiducial-based coregistration because of lack of any morphological features in common spheroids. A commercially available white, water-based permanent paint containing TiO₂, which is not removed by washing, was selected for preparation of the suitable fiducial markers. The fiducials are detectable by MALDI MSI and LSCM in the transmission mode.
- MALDI MSI and LSCM fiducial-based coregistration algorithm was developed; it addresses different depth, spatial resolution and aspect ratios as well as rotation of images taken in the two modes. Fourth, the spatial relationship between the MALDI MSI and of the LSCM intensities was evaluated based on the respective intensities along equidistant layers, or “peels” of the entire spheroid, starting from the spheroid boundary.
- The study of perifosine penetration by MALDI MSI revealed that perifosine does not penetrate to the spheroid core even after 24-hour induction; its signal drops below the detection limit within 200 µm from the spheroid boundary.
- Specific characteristic of the drug, its significant diffusion from the spheroid to the gelatin medium during sample preparation, required precise coregistration and peeling data analysis.
- As expected, viability assays conducted by IHC for markers of cell proliferation and apoptosis with parallel staining of cell nuclei revealed higher signal of the apoptotic marker in the spheroid core and the higher signal of proliferative cells on the spheroid edge.

Conclusions

A robust procedure comprising sample preparation, MALDI MSI and LSCM imaging and multimodal data processing was established. Fiducials were used for precise coregistration. Peeling data analysis, which used data from the entire spheroid area, was applied to construct distribution profiles of selected compounds as a function of the distance from the spheroid boundary. The accurate coregistration of MALDI MSI and IHC maps showed a limited penetration of perifosine into spheroids within 24 hours and allowed differentiation between apoptosis resulting from hypoxia/nutrient deprivation and drug exposure.

Acknowledgment

This work was supported by the Grant Agency of Masaryk University (MUNI/G/097/2016 and MUNI/A/1305/2016) and the Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) under the projects CEITEC 2020 (L050101), TRANS-MED (L050105), the core facility CELLM of CEITEC supported by the Czech BioImaging large FI project (L05010062) and ERDF (CZ.02.1.13/000175).